ON TWO NONLOCAL ELLIPTIC PROBLEMS
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ABsTRACT. We study here the stationary solutions of the following system

-1
u;:V.(mm Vu’“+uV<p), m>1,

Ap = tu,
defined in a bounded domain Q of R". The physical interpretation of the above system
comes from the porous medium theory and semiconductor physics.

The temporal evolution of the spatial density u(z,t) (z € R",t > 0) of free carriers in
semiconductors or in electrolytes is described by the parabolic-elliptic system of equations
[7], [11], [13], which simplified form reads

u =V - (Vu+uVyp)=Au+ Vu- Ve + ulep, (1)

Ap = —u. (2)

Here ¢ is an electric potential generated by the density u.

In this model we assume that the flow of particles caused by thermal chaotic movement
is proportional to the gradient of density Vu (Fick’s law), and velocity of each carrier is
proportional to the gradient of the electric potential. The last assumption is consistent
with the character of frictional forces acting on each particle.

We propose, following [12], to change the continuity equation (1) so, that the term
m-1Au™, m > 1, replaces Au. This kind of term appears in the equations describing
the flow in porous media ([1]). In this way, we consider free carriers in semiconductors
(ions in electrolyte, respectively) as a gas of self-interacting particles moving in a porous
medium. Our problem assumes now the form

-1 '
u=V- (mm Vnm+uV{p) , m>1, (3)

Ap=—u. | (4)

Instead of (4) we can assume another relation between the density and potential. For
example, considering self-gravitating system, (4) should be replaced by

A =i, _ (5)
where @ is the gravitational potential generated by u.
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The natural boundary condition which guarantees the conservation of total mass M =
Jou(z,t) dz is "no-flux” condition, i.e.

m-18u™ Jp
B +u 5;; = (}, _ (6)
We put for ¢ zero boundary condition _ '
‘Plaﬂ = 01 (7)

which, in the Coulomb case, says that the boundary is grounded.
The system is supplemented with the initial condition

u(z,0) = uo(z). (8)

The problem (1)-(2)} was considered in the series of papers: [2] - [10], [14] - [17]. It
was shown that the global existence of solution, the existence of stationary solutions and
blow up phenomena depend on the character of interaction between the particles, total
mass of the system and geometry of the domain §.

Here we are interested in the problem of existence of a stationary solution (U, &) of (3},
(4) (or (5)), (6)-(7) with a given total charge (mass) of particles [, U = M.

Stationary solutions (U, ®) of (3}, (4) {or (5)) fulfill the system

v. (”"“1 +UV¢§) =0, (9)
m .
A =-U, (A®=U)}. (10)
From the first equation we get the following relationship between U and ¢
&+ U™ =C, (11)

with some constant C > 0 {note that & = 0 and U > 0 on the boundary 852).

Putting U = {C — )1 into (10) we reduce the question of the existence of sta-
tionary solutions of (3), {4} {or (8)), (6)-(7) with a given total charge {mass) M to the
noniocal elliptic problem :

| AP = ......(C — @)_a, o = m > 0, (12)
in the Coulomb case or | _'
_ A% = (C ~ &), ' (13)
in the gravitational one. ' '
On g‘e boundary 8§ we have
$=0, (14)

and the unknown constant C is connected with M = fﬂ U by the relation

[©-or- )
For a given C > 0 the problem (12) ((13)), (24) wﬁl be called problem (C) and éc will -

denote its solution.

The proof of the existence of a solution to the problem (C’ ) wx]l i)e based on the theory
of sub- and supersointzons of elliptic probiems (cf. {18], [19])

In the Coulom‘b case we prove the foilowmg theorem.
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THEOREM 1. For every M > 0 and each domain §) there exists a unique solution of
the problem (12), (14), (15).

Proof: We proceed as follows. First we prove the existence of a unique solution
P¢ of the problem (C) for all C > 0. Next we check the monotonicity and continuity

of the fanction M(C} = [ (C — ®¢)*. The theorem will be proved if we show that
M{(0,+00)} = R*.

The proof is divided into two paris: « > i (here we obtain classma.i soiutxons) and
0 < a < 1 (solutions will be weak).

The existence of the solution ®¢ for C > 0 is obvious since we have o = 0 as a
subsolution and ®¢ = C as a supersolution for the problem (C). To show the continuity
M(C) = [,{C — ®¢)" note that for @ > 0 and C > Cp (C < Cp resp.) the function
P, + C ~ Co, (%o, resp.) is a supersolution to the problem (C). To prove monotonicity
of the function M{C) note that for m € (1,2} {a > 1) and all ' > Cg the fuz;ctxoa o(ﬁc,,

is a subsolution for the problem (C). Hence we have

9 5 C c
M({C)=~ ]{; APp = = *—;‘i’c > - A E,;-é—o‘{’ca = E;;M(Cg). (16)
The last inequality implies that M(C) - oo as C ~» oo. Note that M(C) = [,(C ~
Bo)* < [RC*. Hence M(C) — 0if C — 0, and the theorem has been proved for a > 1.

The proof for a € {(0,1) is similar but we use weak equivalents.

In the gravitaticszzai. problem (13}, (14} we consider three cases: o € 0,1}, a=1, a>
1. S

THEOREM 2. Form > 2 {(a € (0,1)), n > 1 and for any domain there exists a unigue |
solution of (13), (14), (15) if only M > Mo where My is some pos:twe constant depending
on §} and m, My = Me(S},m) > 0.

Proof: For a € (0,1) the idea of the proof is exactly the same as in Coulomb case. The
ounly difference lies in the fact that M({0,0)) = (Mo, +00), My = Mo(,m) > 6. To

prove it we use the furiction $¢ = ~w(2n)"!(R® — [2[?) as a subsolution of the problem
(C) for w > we, where we = (C + 9%3":)“ and the function $¢ = 0 as a supersolution.

THEOREM 3. Form = 2 I(a =1}, n2>2L M>0 sad for any domain for whick the first
eigenvalue A; of —A is greater than 1 there exists a amquc solution of (13), (14), (15).
There is no solution for domains with Ay <1,

Proof: Since for a = 1 &¢ = C'®; we have to consider only the problem e
AQ]_ = ] - Q;, R i : (17)

®y)on = 0. - (1

We distinguish two cases:

1} A; >1

The Fredholm alternative implies that there ex:ats exactly one so}.ntmn $; of the equa» _'
tion (17), (18) in 2. What we must show is that &; < 0 (1 —&, is a density). Since for
"¢y (the first eigenfunction) (A + Id)h = (1 — A, )1111 we can apply in ) the maximum
principle. The solutmn $; on the boundary 8Q equaIs 0, (A+ Id)@g =120 so we get
that ; <0in Q.

2 <1
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Let 9, be the first eigenfunction for ~A (Ayy = X, 0< A < 1). Multiplying the
equation (17) by ¢; and integrating over by parts we get (1— 1) J; 8191 = [, ¥1. Since
1— A1 > 0 and ¥, is constant sign function, then the function ®, cannot be negative.

THEOREM 4. Form < 2n/(n+2) (a> (n+2)}/(n—2}), »n > 2 and Iﬂze star-shaped
domain there exists no solution of (13), (14), (15) with mass greater than M;{Q, m).

Proof: To prove the nonexistence result for large M we first prove the nonexistence of
the solution of {(13), (14) for C large enough.

Assume that for C > (A)¥/* Y there exists a solution ¢ in 2. Multiplying our -
-equation by ¥; {1 > 0 ) weget fn(wz\xfbcm(cw@g)“)d;; = 0. But ~M@c—(C—P0)* <
(C — B} A — (A7) 1) < 0. Hence there is no solution of the problem (C) for
C > (W)Y, Assuming that Q is a star-shaped domain in IR”, we use the Pokhozhaev

identity to show that there is no solution of (13), (14}, (15) for M large enough.
Indeed from the relation _

J-

we infer

8% 1*
dv

(z-v)dr = 2?aﬁ—¥£z ((C - &o)** —~ C) — (0~ 2) x

_([ﬂ(c — Pe)** CM)
s ([ 3 ) ([ 4)

Since fyo(2 - v)lds < C’{.Q)d"“2 where d= cham(.Q) and C(§2} depends on the shape
of § only {not on the size of {1}, we obtain

M < C(Q)d? ((zn i - —n+2) /ﬂ (C — 86)** 4 (n — Z)CM) .

Km< 2 (n>2), then 2n-d7 — n 4+ 2 < 0 hence
M < C(Q)d*n - 2)C,

which together with the upper bound for C gives us the nonexistence of solutions of (13),
(14), (15) for M > My(Q, @) = C{Q)d™2(n — 2)(A1)57.
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